Protein detection with a novel ISFET-based zeta potential analyzer.
نویسندگان
چکیده
This publication presents a novel ISFET-based measurement concept for the determination of the zeta potential, which is known to be an efficient method for the detection of protein accumulations onto surfaces. The basic set-up consists of two monolithically integrated ISFET sensors arranged in a serial flow configuration together with a precoated fused silica capillary, which provides the reactive surface for the protein detection. In comparison with the state of the art, this novel biosensor system is characterized by a small size, an extremely low reagent consumption, a simple fluidic concept, a short analysis time, and a very effective noise suppression due to the differential ISFET set-up. In the following, an overview is given over the theoretical background of the measurement principle. In order to get deeper insight into the theoretical background of the measurement principle, a simulation model was developed which is based on the site-binding theory and takes into account the different proton dissociation equilibria of the surface groups as well as the influence of monovalent electrolyte ions. A quasi-Newton iteration after Broyden was used for the numerical solution of the formulated equation system. For an experimental confirmation of the simulation results, the calculated zeta potential vs. pH curves were compared with measured data for various modifications of the fused silica capillaries (in untreated state, after a hydrothermal activation, and after the deposition of several silanes) and it could be shown, that the chosen physical model represents a satifactory theoretical basis for the description of the occuring surface effects. Measurements before and after a covalent coupling of the model analyte lysozyme were performed in order to demonstrate the feasibility of an immunosensor based on the measurement of the streaming potential and showed a significant shift of the zeta potential vs. pH curves.
منابع مشابه
Non-Invasive Screening for Alzheimer’s Disease by Sensing Salivary Sugar Using Drosophila Cells Expressing Gustatory Receptor (Gr5a) Immobilized on an Extended Gate Ion-Sensitive Field-Effect Transistor (EG-ISFET) Biosensor
Body fluids are often used as specimens for medical diagnosis. With the advent of advanced analytical techniques in biotechnology, the diagnostic potential of saliva has been the focus of many studies. We recently reported the presence of excess salivary sugars, in patients with Alzheimer's disease (AD). In the present study, we developed a highly sensitive, cell-based biosensor to detect treha...
متن کاملReview on Graphene FET and its Application in Biosensing
Graphene, after its first production in 2004 have received lots of attentions from researchers because of its unique properties. High mobility, high sensitivity, high selectivity and high surface area make graphene excellent choice for bio application. One of promising graphene base device that has amazingly high sensitivity is graphene field-effect transistor (GFET). This review selectively su...
متن کاملReview on Graphene FET and its Application in Biosensing
Graphene, after its first production in 2004 have received lots of attentions from researchers because of its unique properties. High mobility, high sensitivity, high selectivity and high surface area make graphene excellent choice for bio application. One of promising graphene base device that has amazingly high sensitivity is graphene field-effect transistor (GFET). This review selectively su...
متن کاملSimulation of ISFET operation based on the site-binding model
A program for the simulation of the response of an ISFET with an oxynitride gateinsulator will be introduced, which is based on the site-binding model and is designed for an ISFET working in constant charge mode. With this program, principal properties of ISFET operation can be calculated, such as pH sensitivity dependent on surface charge density and surface composition. In addition, an ISFET ...
متن کاملZeta potential determination of polymeric materials using two differently designed measuring cells of an electrokinetic analyzer.
The so-called zeta potential can be determined through electrokinetic measurements and indicates the status regarding surface charges along the interface between solids and liquids. Surface charge gives us information about the condition, quality, and characteristics of a macroscopic surface in the polar medium. In our study the zeta potential was determined using a "SurPASS" electrokinetic ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biosensors & bioelectronics
دوره 14 4 شماره
صفحات -
تاریخ انتشار 1999